A Weighted Measurement Fusion Particle Filter for Nonlinear Multisensory Systems Based on Gauss–Hermite Approximation

نویسندگان

  • Yun Li
  • Shu-li Sun
  • Gang Hao
چکیده

We addressed the fusion estimation problem for nonlinear multisensory systems. Based on the Gauss-Hermite approximation and weighted least square criterion, an augmented high-dimension measurement from all sensors was compressed into a lower dimension. By combining the low-dimension measurement function with the particle filter (PF), a weighted measurement fusion PF (WMF-PF) is presented. The accuracy of WMF-PF appears good and has a lower computational cost when compared to centralized fusion PF (CF-PF). An example is given to show the effectiveness of the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unscented Kalman filter revisited - Hermite-Gauss Quadrature approach

Kalman filter is a frequently used tool for linear state estimation due to its simplicity and optimality. It can further be used for fusion of information obtained from multiple sensors. Kalman filtering is also often applied to nonlinear systems. As the direct application of bayesian functional recursion is computationally not feasible, approaches commonly taken use either a local approximatio...

متن کامل

Sigma-Point Filtering and Smoothing Based Parameter Estimation in Nonlinear Dynamic Systems

We consider approximate maximum likelihood parameter estimation in nonlinear state-space models. We discuss both direct optimization of the likelihood and expectation– maximization (EM). For EM, we also give closed-form expressions for the maximization step in a class of models that are linear in parameters and have additive noise. To obtain approximations to the filtering and smoothing distrib...

متن کامل

SDE - A program package for the simulation, optimal filtering and maximum likelihood estimation of nonlinear Stochastic Differential Equations

Continuous time models with sampled data possess several advantages over conventional time series and panel models (special issue 62:1, 2008, of Statistica Neerlandica). For example, data with unequal time intervals can be treated efficiently, since the dynamic model parameters of the system model are not affected by the measurement process. In the linear case, the nonlinear parameter restricti...

متن کامل

Gaussian filtering and smoothing for continuous-discrete dynamic systems

This article is concerned with Bayesian optimal filtering and smoothing of non-linear continuous-discrete state space models, where the state dynamics are modeled with non-linear Itô-type stochastic differential equations, and measurements are obtained at discrete time instants from a non-linear measurement model with Gaussian noise. We first show how the recently developed sigma-point approxim...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017